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Features of  movement  of a drill pipe string in a well filled with a thixotropic f luid are analyzed taking into 

account inertial and elastic forces of the rope system. I t  is shown that processes of  f luid structure degradation 

can lead to nonstationary movement of the pipes. In this case periodic and chaotic auto-oscillations are 

excited in the system. 

Introduction. In the practice of drilling it has been noticed that various complications associated with a 

change in the hydrodynamic pressure of the drilling mud on the well walls can occur when a drill pipe string is 

lowered or lifted [1-8 ]. When a drilling (or casing) string is lowered into a well, a portion of the drilling mud is 

displaced into the annular space between the string and the well walls, which leads to the appearance of a pressure 

gradient required to overcome inertial and frictional forces. Thereby an excess hydrodynamic pressure is added to 

the hydrostatic one, which can lead to hydraulic breakdown of the stratum and entry the drilling mud into the 

cracks formed. In certain cases the pipes can be crumpled and the valves damaged. On the othehand, when the 

pipes are lifted from the well, pressure in the well is reduced, which can result in inflow of stratum fluids into the 

well, and, consequently, in emergency gushing or collapse of the well. 

The calculation of the hydrodynamic pressures occurring during lifting/lowering operations is reduced to 

an analysis of fluid movement between two coaxial cylinders when one of them (the inner one) moves with a certain 

velocity. In the case of steady movement of viscous and viscoplastic fluids this problem has been solved in [9-11 ]. 

Numerous theoretical and experimental studies show that the magnitude of the hydrodynamic pressure is affected 

substantially by inertial forces appearing during transient movement of a string [1-3,  6 -8  ]. This effect is very 

dangerous since accelerated movement of the string can result in pressure pulsations that produce high peak loads 

on the well walls. 

Drilling fluids are thixotropic media. In formulating the problem one should take into account 

degradation/restoration of the drilling mud structure. Linear kinetic equations were employed in [12, 13 ] to 

simulate degradation/restoration processes. It has been shown that various characteristics of steady-state movement 

of rheological fluids can be described satisfactorily within the scope of this approach. For describing the 

degradation/restoration processes, in [14 ] we proposed using nonlinear models that are a generalization of classical 

models of the "predator-prey" type. It was noted that in addition to describing the steady-state characteristics 

complex transient (auto-oscillation and chaotic) modes can be described by using nonlinear models. In [15] a 

simple nonlinear kinetic equation was proposed for describing the processes of degradation/restoration of bonds 

between structural elements of a medium. This equation is employed for simulating fluid movement in the clearance 

between the cylinders of a rotation viscometer. 

The present work is devoted to analysis of string movement stability during lowering/lifting operations. It 

is shown that processes of degradation/restoration of drilling mud structure can result in loss of stability of 

stationary string movement and establishment of periodic or chaotic auto-oscillations that manifest themselves in 

dangerous pulsations of hydrodynamic pressure. Results that make it possible to identify justified regimes of 

descending/lifting operations that prevent excitation of these oscillations are obtained. 
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Fig. 1. Schematic diagram of drilling string movement. 

1. Formulation of the Problem. Let a pipe string that is closed at the bottom move down a well of radius 

R1 filled with a thixotropic fluid. The outer radius of the pipes is R2. Then the velocity distribution pattern of the 

fluid in the annular space between the well and the pipes has the shape shown in Fig. 1 (in the case of lifting of 

the s tr ing  the fluid movement pattern will be the opposite). Let Ur be the speed of the rope leaving the drum of the 

drilling winch. This speed is determined by the driller and, thus, may be considered to be a specified function of 

time: Ur --f(t). The speed of the string can be substantially different from Ur since the ropes from which the string 

hangs are elastic (it is well known that the amplitude of the string speed oscillations caused by the elasticity of the 

rope system can be as high as 3070 of the rope speed [8 ]). Taking this fact into account, let us introduce a spring, 

located between the rope end leaving the winch drum (point A) and the upper end of the drilling string, into the 

diagram presented in Fig. 1. To complete the model we can assume that this spring simulates the elasticity of both 

the rope system and the pipe string. 

The equation of string movement has the form 

du 
M - - ~ - = F + A p Q + M g - k ( x  1 - ~ ) .  (1) 

The displacement on the rope ~ is determined by the equation 

d~_ 
d--/- / (t). 

Often the rope speed (the function f ( t ) )  is assumed to be constant in estimating the hydrodynamic pressure. A 

more exact approach requires taking into account that the period of lowering a linkage of several pipes is divided 

into three steps: acceleration, movement with constant speed, and deceleration. 

If f ( t )  = uo = const, then 

du d 2 d2x 

d t  - dt  2 (xl - ~) - dt  2 ' 

where x = xl - ~ is the elongation of the spring. 
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The  flow in the annular  space can be replaced with a flat flow [6 ] by writing the fluid movement equation 

in the form 

Ov O(Ov) Ap 
P o t - O y  tt~y +--s 0 < y < h ,  (2) 

with the boundary  conditions 

v(O, t )=u,  v(h, t)=O. (3) 

Drilling fluids are non-Newtonian media whose viscosity decreases with increase in shear  rate. This 

situation takes place due to degradation of structural bonds in shear movement. Using the concentration of degraded 

bonds s as a quantitative characteristic of the structurization of the fluid, the dependence of the fluid viscosity on 

the concentration s can be written as follows: 

exp ( -  (s/s.) n) - exp ( -  (soo/s,) n) 1 - exp ( -  (s/s.) n) 
p (s) =/x  0 + ,u= (4) 

1 - exp ( -  (soo/s.) n) 1 - exp ( -  (s=/s.) n) 

At a concentration of degraded bonds equal to zero the fluid viscosity has its maximum and is equal to tt (0) -- kt0. 

With degradation of the bonds (i.e., with increase in s) the viscosity decreases in accordance with a nonlinear 

exponential law. The  minimum of the viscosity/~(s~) = /x~  is attained when all the bonds are degraded (s~ = 1). 

In order  to describe the process of bond degradat ion/restorat ion let us introduce the following kinetic 

equation: 

d - 7 = - a  s - s o o  [ 1 - e x p ( - y s / ~ ( s )  k2)] . (5) 

tn accordance with this equation the concentration of degraded bonds should tend to a certain equilibrium value 

so that can be obtained from the formula 

s o = s~ [1 - exp ( -  7SoU (So) k2) ] .  

at constant shear  rate ( k -- const). It is evident from the above formula that with increasing in k the concentration 

of degraded bonds increases, tending exponentially to its maximum value s~. In addition, at low 

.2  
s~ [1 - exp ( -  7skt (s) ~2) ] .~. S~ )'Skt (S) e 

i.e., at low shear rates the rate of bond degradation is directly proportional to the intensity of viscous energy 

dissipation in the flow. 

It is assumed that the fluid is incompressible, and therefore the mass conservation law for the fluid can be 

written as follows: 

h 
Qu + 2~R o f vdy = 0 ,  R 0 = (R 1 + R 2 ) / 2 .  (6) 

0 

We will seek for an approximate solution of Eq. (2) as a parabolic function 

2 v = a y  + b y + c .  

The  coefficients a, b, and c are determined upon substitution of the speed v into Eq. (6) and boundary  conditions 

(3): 
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h 9 
~R  2 = , u + 2z  R 0 f (ay 2 + by + c) dy 0 

0 
ah 2 + bh + c = 0 ,  c ~ u .  

Solving this system of equations, we obtain 

V = 

[(2 
R2 

a oh (y) + 1  
2 R2) ] _ 3 " ' 2  

RO h + 4 ~ + 1 u , 

where the speed v satisfies Eq. (2) in the mean, i.e., 

f P Ot Oy /~-~y L pg d y = O ,  
0 

whence it follows that 2 [(R2) ] 
L R2 du L 3 1"2 R2 

Ap = - -~p no  h at -~ u Ro h + 2 ff (s2) + 3 ~ + 4 B (Sl) -/_49g. 

The functional force of the pipe string in the fluid is given by the expression 

OV 3 ~'2 + 4 ff (s1) u F = 2,TrR2L /u ~y = - 2arR 2 ROh 

Substituting Eqs. (7) and (8) into Eq. (1) and introducing the following dimensionless variables: 

v = . / . o ,  �9 = t~ s j  = 2 ,1 ( s j )  = F, ( s j ) / f  
' S .  ' 

] X =  Uo k + x  , 

we obtain 

d2X 

dT 2 
-- -- U ( E  lr]  (S1) + E  2r] ( $ 2 ) ) - E a X  , 

(7) 

(8) 

(9) 

dSj 
dr = - S] - A (1 - exp ( -  GjS] ~1 (Sj) U2)), (10) 

where 

r I ( S j ) = Z + e x p ( - S ; ) ,  j =  1, 2 ,  

dX  so~ ~0 - ff oo 
U = I +  d--~-; A = - - ;  f l =  

s, 1 - exp ( -  A n) 

E 1 = 2~flR2L (2h + R2) (3R 2 + 4 R o h ) / B ;  

(11) 
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Fig. 2. Phase portrait at G 1 = 0.4 when the limiting cycle is achieved. 

E 2 = 27cflR~ L (3R 2 + 2Roh) /B;  

E a = 2Roh3k/(Ba) ; B = ah 2 (2MRoh + z R  4 Lp) ; 

, 

- -  . R2 
Z=bt~ / ~ 0 e x p ( - A  n ) G l = y f l s ,  3R-~O h + 4  

/x0 - /%o ' 

2 )2 2 
R2 u0 

Thus the simulation problem for pipe string movement in lowering/lifting operations has been reduced to 

the four th-order  nonlinear dynamic system of equations ( 9 ) -  (11). 

2. Results of Numerical  Analysis of the Problem. In order  to estimate the coefficients of the system (9) - (11), 

let us take the following values of the parameters [16 ]: R 1 = 0.08 m, R 2 = 0.05 m, L = 1000 m, M = 30,000 kg, p 

= 1300 kg /m 3, k = 5.105 N/m.  Hereinafter  s. = 0.25, a = 0.5 1/sec, n = 10, 7 = 8.5.10 -6 sec/Pa.  Then  we obtain 

E1 = 145, E2 = 55, E3 = 45, Z = 0.1, A = 4. Let us select the speed of the rope leaving the drum of the drilling 

winch u0 (G1 N u 2) as the controlling parameter.  

Calculations shown that the range of the parameter  G1 is divided into three regions differing in the 

dynamics of the process. In the region G1 < 0.3 the drilling string is lowered with constant speed equal to the speed 

of the rope leaving the drilling winch drum, and no pulsation of the hydrodynamic pressure is observed. At low G 1 

the degraded bonds have time to be restored and the fluid viscosity is equal to its maximum value/~0. 

Within the region 0.3 _ G, < 5.8 (for the speed of the rope leaving the drum this corresponds to the region 

0.5 _< uo < 2.5 m/sec)  intense degradation of structural bonds takes place and stable oscillations of all variables 

occur in the system, and the amplitude of the oscillations and the mean value of $t are higher than those of $2 in 

all cases. The  phase portrait in the plane of :g (the dot denotes the first derivative with respect to time) and the 

dimensionless pressure P (P = p/Lpg) at G1 = 0.4, when a limiting cycle is achieved, is presented in Fig. 2. As the 

figure shows, the values of the speed of drilling string lowering and the pressure undergo auto-oscillations. If the 

value of the pressure is converted from dimensionless to dimensional form, it will range from 87.106 to 127- 106 

N / m  2. At G1 = 0.5 the period is doubled. A fur ther  increase in G1 (G1 > 0.7) leads to a complicated limiting cycle. 

The complication in this case consists in the appearance of an additional "loop" corresponding to a small-scale beat 

on the background of the regular oscillatory process. At GI = 5.0 a doubled period with two beats is obtained. The  

increase in the complication of the oscillations with increase in the controlling parameter  results in the appearance 

of a chaotic mode at G1 = 5.3. The  structure of the corresponding strange attractor is gven in Fig. 3. In this case 

the pressure oscillations occur within the range from 20.106 to 77.106 N / m  2. 
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Fig. 3. Strange attractor (G 1 = 5.3). 
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Fig. 4. Dependence of the Kolmogorov entropy on the dimensionless time. 

In order to elucidate to what extent the dynamic system under investigation is chaotic at G1 = 5.3, we 

calculated the Kolmogorov entropy [ 17 ]. The dependence of the Kolmogorov entropy K on the dimensionless time 

is given in Fig. 4. A chaotic process at r --> oo requires a positive value of the entropy. Figure 4 shows that with 

time the value of the Kolmogorov entropy attains a positive stationary level Koo = 0.032. 

A further increase in the controlling parameter results in a continuous reduction in the amplitude and 

number of periods of the oscillations up to vanishing of the oscillatory mode at Gl = 5.8. The third region of G1 

values (G 1 >__ 5.8) is characterized by stable values of all variables as well as by high values of the concentration 

of degraded bonds S] and $2. An increasing in G] to 30 results in complete degradation of the bonds between the 

structural elements, and the fluid viscosity attains its minimum value. In this region of G1 values the fluid behaves 
like an ordinary Newtonian fluid. 

Conclusion. An analysis of the stability of pipe string movement in a well filled with a thixotropic fluid has 

been performed. A model making it possible to account for the inertia of the string, the elasticity of the rope system, 

and the inertia of the fluid has been suggested. A numerical investigation of the system of differential equations 

obtained has been performed. The study has shown that movement of the pipes accompanied by intense degradation 

of the fluid structure, can become unstable with the appearance of periodic and chaotic auto-oscillations that lead 

to dangerous pulsations of the hydrodynamic pressure on the well walls. The results obtained in the present work 

are important for understanding the mechanisms of the appearance of complications in the drilling process as well 
as for justified specification of operating modes in lowering and lifting drill pipes. 
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N O T A T I O N  

M, mass of the drilling string (together with the mass of the drilling mud within the string); F, frictional 

force of the string in the fluid; Q, area of the string cross section;p, pressure at the lower end of the string; Patm, 

atmospheric pressure; Ap = Patm - P; Xl, displacement of the string; g, free-fall acceleration; k, string stiffness 
simulating the total stiffness of the rope system and the drilling string; u, speed of string movement; t, time; p, 
fluid density;/x, dynamic viscosity of the fluid; v, speed of fluid movement; y, distance from the outer surface of 

the pipes; L, length of the drilling string; h, clearance between the well and the drilling pipe; s., characteristic 
value of the concentration of degraded bonds at which the fluid'viscosity decreases; n, parameter of the fluid 
characterizing the degree of the dependence of the viscosity on the structurization of the fluid; a and ~, positive 
constants. 
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